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A model of a craze at the tip of a uniformly extending crack is developed which permits the calculation of 
the stress distribution in the craze. In accord with experimental observations by Kramer 11 the craze is 
modelled as a collection of independent fibrils that draw from the substrate by a process akin to the 
drawing of textile fibres with necking. Except at the very tip of the craze where complex yielding type 
phenomena occur, the stress in the craze is taken to correspond to the drawing stress. The craze stress is 
treated as the cohesive crack closing stresses in the Barenblatt treatment of crack tips. The principal fact 
used in the development is that the drawing stress depends upon the rate of draw and hence upon the 
slope of the craze displacement. Th is leads to a non-linear integral equation for the craze stress. Using an 
empirical relation between drawing stresses and rate of draw, this equation is solved for the stress 
distribution in the craze by numerical methods. The distribution shows peaks at the craze tip and at the 
crack tip as observed in some experiments. The magnitude of the peaks depends upon the materials 
parameters used. For certain values of these parameters, the constant stress Dugdale model yields a good 
approximation to the displacement profile. 
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I N T R O D U C T I O N  

The Dugdale model 1 of a linear plastic zone at the tip of a 
crack has been used extensively and with considerable 
success as a representation for crazes at crack tips. The 
model has been used for both theoretical investigations 2'3 
on the effect of viscoelasticity on crack extension and for 
the analysis of experimental data obtained using in- 
terference optics techniques for displacement profiles 4- a. 
The observed craze displacement profiles can be re- 
asonably represented by this model, although some 
differences  o c c u r  4'7'8. The model has also often been used 
to calculate crack opening displacements which are then 
used to provide a criterion for crack growth. 

The Dugdale model, developed for plane stress yielding 
in this steel sheets, assumes that the stress in the yielded 
zone at the crack tip is a constant independent of position 
and equal to the yield stress of the material. For  crazes in 
thin films of polymers (which have nevertheless been 
shown to be representative of crazes in bulk polymer 
provided the film is not too thin 9'1 o) the stress distribution 
in the craze can be determined with high resolution by 
electron microscopic observation of the craze displace- 
ment profiles 11. This can be done both for crazes without 
cracks 12 and for crazes grown from holes to represent 
cracks in the thin films 11, These latter experiments 
uniformly show that the stress within the craze is not 
uniform. Typically, there are peaks in the stress distri- 
bution at the tip of the craze and at the tip of the crack. 
While in many cases the peaks are not very great, in other 
cases they are significant I a. We thus have the situation in 
which some experiments are consistent with the craze 
stress being constant over the craze, while other experi- 
ments show that it is not. 

A possible method of analysis of the stress distribution 
in a craze is provided by the demonstration that craze 

thickening occurs by the process of fibril drawing from the 
undeformed substrate 14 by a process akin to drawing with 
necking 15 in a textile fibre, with the craze fibril cor- 
responding to the drawn fibre. It has recently been shown 
that there is indeed a similarity between macroscopic and 
craze fibril drawing 16. The drawing stress of a textile fibre 
depends upon the rate of draw, increasing as the draw rate 
increases, and, if the craze thickening process is indeed 
analogous to fibre drawing, the craze stress in a craze at 
the tip of an extending crack should depend upon the 
crack velocity. Moreover, since under these circumstances 
the rate of fibril drawing from the substrate will depend 
upon the slope of the craze displacement curve, the stress 
can only be constant along the craze if the slope of the 
displacement is constant. This cannot be the case, and 
hence the stress along the craze cannot be a constant. The 
magnitude of the stress variation is, however, a matter for 
calculation. 

In addition to these purely rate dependent arguments, 
there is the matter of the yielding behaviour of polymers 
with necking that argues against a uniform craze stress. 
Upon yielding, the stress decreases to the drawing stress, a 
phenomenon commonly called 'strain softening'. While 
the processes that occur at the tip of a craze are far more 
complex than the yielding of a textile fibre, in the 
interpretation of craze thickening as a drawing process, 
the processes at the crack tip must somehow correspond 
to the yielding phenomenon and the stress would be 
expected to drop just behind the craze tip. This will be 
discussed more fully later, and again the magnitude of the 
effect is a subject for computation. 

The purpose of this paper is to develop the concept of 
craze widening by fibril drawing into a method for 
determining the stress distribution in a craze at the tip of a 
uniformly extending crack. The craze is considered as a 

0032-3861/84/121727-07503.00 
© 1984 Butterworth & Co. (Publishers) Ltd. POLYMER, 1984, Vol 25, December 1727 



Stress distr ibution in a craze tip: E. Passaglia 

collection of essentially independent fibrils. The principal 
fact used is that the drawing stress depends upon the rate 
of draw, and hence upon the slope of the displacement. 
Taking reasonable physical account of these subtleties 
leads to a stress distribution that has peaks at the craze 
and crack tips. The magnitude of these peaks depends 
upon the material parameters associated with the drawing 
process. 

THE MODEL 

We consider a uniformly translating Mode I crack with 
craze at its tip. We assume that the length of the craze is a 
constant and very short compared to the crack length. 
The properties of the substrate and of the drawn craze 
fibrils are considered to be time-independent, i.e. we do 
not consider these to be viscoelastic materials. Such 
considerations would add greatly to the complexity of the 
problem. For our analysis we adopt the Barenblatt 
theory t7, as previously done for cracks advancing in 
viscoelastic materials 2 and for the effects of the viscoelas- 
ticity of crazes at the tip of non-moving cracks t s. This 
model is only applicable to short crazes at the tips of long 
cracks, which is reasonable for the situation considered 
here. This model has another important result, In it, there 
is no stress singularity at the tip of the craze or at the tip of 
the crack. It should be noted here, that this treatment 
considers the stress in the craze to be the cohesive crack- 
closing stresses of the Barenblatt theory. In their absence, 
the crack would extend to the craze tip, where a stress 
singularity would exist. The cohesive (craze) stresses in the 
Barenblatt theory serve to cancel this singularity. The 
stress at the crack tip, which exists in the craze, is not 
specified. This is well reviewed by Schapery 2. 

This removal of the singularity at the craze tip by the 
closing (craze) stresses has an important corollary. Baren- 
blatt has shown that under these circumstances, the 
derivative of displacement at the tip of the craze is zero, i.e. 
the displacement there is cusp shaped. As will be seen, this 
has an important bearing on our analysis. 

We consider a crack of length 2a in an infinite material, 
and consider only one of its tips in Figure 1. The tip of the 
crack is advancing with uniform velocity v. The length of 
the craze is ~. Two coordinate systems are specified, one 
denoted by x with origin located at the centre of the crack, 
and one with origin at the craze tip, denoted by ~ and ~. 

Now, under the assumed conditions of uniform trans- 
lation, we have: 

gw/Ot)x + vdw/Ox), = 0 (1) 

where w is the craze displacement. This gives: 

Ow/c~t)x = vdw/~3¢), (2) 

From the Barenblatt theory, we can express w as a 
function of the stress within the craze (2) 

ct 

; {  rt ,3, 
0 

where Ce is the plane strain compliance of the uncrazed 
substrate and a(0 is the craze stress. This equation may be 

differentiated to give: 

ot 

0 

(4) 

Now we define new variables 

~=;/= (5) 

and a(r/), combine equation (4) with equation (2) to obtain: 

1 

~ = ( ~ t  ) x = v ( ~ ) ,  =vCe f J x/rt ,&t 
0 

(6) 

The integral exists as a Cauchy principal value provided 
a(r/) is continuous. 

This is the fundamental equation for our analysis. It 
says that the time rate of change of displacement at a given 
position is given by an integral of the stress over all points 
in the craze. However, by hypothesis, the stress at the 
given point depends upon the rate of draw: 

a = a(~) (7) 

i.e. the process is essentially a non-linear viscous defor- 
mation. Hence we are given a type of integral equation for 
the stress within the craze. Before proceeding to discuss 
the solution of this equation we discuss the situation at the 
craze tip, for it presents some subtleties. 

Situation at the craze tip 
The situation at the craze tip is very complex. The craze 

grows by a Taylor meniscus instability 11't9. For our 
purpose two interrelated questions need to be answered. 
The first is, 'When are the craze fibrils fully formed so that 
they may be considered to be drawing?', and the second, 
which is related to the first is, 'At what point may the 
stresses in yielded-crazed regions be considered to be 
closing stresses in the Barenblatt sense?' 

We will attempt to answer these questions by pressing 
the analogy between craze thickening and fibre drawing. 
This is a dangerous procedure right at the craze tip for 

Crack 
~ --- i Tip 

X 
it 

Figure 1 Schematic representation of a craze at the tip of a crack 
showing the coordinate systems used. The arrows represent the 
craze stress ~r 
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there the analogy might very well break down. In fibre 
drawing, the stress rises to a yield point at a strain of 
several per cent ~s'2°. At this point, the tangent to the 
stress-strain curve is parallel to strain axis, and this is a 
point of instability. Necking does not, however, occur at 
this point. It begins at a somewhat higher strain, and what 
visually appears to be a fully formed neck appears at a still 
higher strain, at which point the stress is lower than the 
yield stress but higher than the drawing stress. The stress 
then continues to decrease until it achieves the value of the 
drawing stress, at which point the new fibre diameter is 
established. The engineering stress then remains sensibly 
constant until all the material is drawn.* 

We hypothesize that in broad terms this process can be 
taken over to the craze tip problem. Thus we assume that 
yielding will occur at the craze tip, when the stress 
achieves a value corresponding to the yield stress, even 
though no craze fibrils may be observable at that point. 
That is, in answer to our second question, we state, 'when 
the material becomes highly non-linear, even though 
craze fibrils may not be yet formed'. We shall then assume 
that very shortly thereafter, craze fibrils are formed, and 
the drawing process proceeds. Where this is in the Taylor 
meniscus region remains a moot point. From the results of 
calculations to be shown later, it would appear to be in the 
region of the meniscus fingers. In any event, we assume 
that the stress at the tip of the craze corresponds to the 
yield stress, and fibril formation occurs very shortly 
thereafter. 

It is clear from equation (6) that provided the stress is 
finite, the rate of change of displacement is zero at the 
craze tip. The stress at that point cannot, therefore, be 
caused by the drawing mechanism, for Ow/&)x will always 
be zero at the craze tip. This is the condition that no 
singularity exist at the craze tip in the Barenblatt for- 
mulation. We are therefore forced to assume that at the tip 
of the craze, the stress corresponds to the yield stress, and 
that this stress, unlike that at all other points within the 
craze after fibrils are formed, is not determined by the 
slope of the displacement. It will, of course, be determined 
by the velocity of the crack, for the yield stress is also 
dependent upon the rate of deformation, but not by the 
slope of the displacement curve. 

Situation at the crack tip 

From equation (6) it is seen that the crack tip (fl -- 1), 
becomes infinite if a(q) is finite at that point. If tr(q) 
approaches zero linearly or faster, if(l) becomes finite, 
since a(r/) is always positive. These considerations will 
become important when a solution of equation (6) is 
attempted. To do this we need to consider the time 
dependence of the drawing process. 

Drawing process 
There have been numerous studies of the rate de- 

pendence of the yielding process, but relatively fewer on 
the drawing process 15'2°-27. It is important to note that 
the whole stress-strain curve is dependent upon the rate of 
draw. Indeed, Matsuoka 2° has shown that if tro(~) is the 
stress-strain curve obtained at a strain rate of ko, then the 
stress-strain curve at a new strain rate may be appro- 
ximately obtained from the relation: 

* The author is greatly indebted to Dr John M. Crissman for much of this 
discussion 
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a(8) = ao(0(~/~o)" (8) 

where n is a constant of the order of 0.025-0.08 for many 
polymers. This constituitive equation has recently been 
used by Kramer and Hart 28 in a theoretical treatment of 
crack growth in polymers. Equation (8) is somewhat 
different from other results that show that the strain rate 
dependence of the yield stress is somewhat different from 
that of the draw stress is. In these other studies, at a 
constant temperature, both the yield stress and draw 
stress are linear on a plot of stress vs. the logarithm of the 
strain rate, i.e. 

a = tr, + tr,log(~/~,) (9) 

where tr, is the yield or drawing stress at the reference 
strain rate ~,. The results of Matsuaka imply that the rate 
coefficient tr s is the same for all portions of the stress- 
strain curve, and indeed it is not greatly different for the 
yield stress and the draw stress. We shall adopt equation 
(9) as giving the rate dependence of the stress-strain curve 
for all portions beyond which a neck has formed. From 
the previous discussion, this occurs at a strain somewhat 
beyond the yield strain but smaller than the strain at 
which the stress has achieved the constant value which is 
the draw stress. The differences between using equations 
(8) and (9) are negligible for our purposes. 

For our purposes it is best to write equation (8) in the 
form: 

tr = tr , + mtr ~l o g( i / ~,) (10) 

where m = a,/a,. Investigation of the draw behaviour for a 
number of polymers shows that m varies from about 0.03 
to 0.115,20-27 depending on the polymer, the temperature 
and, of course, slightly on the reference strain rate. In our 
calculations we shall treat m as a parameter and show 
calculations for various values of it. 

One other point we need to discuss is the difference 
between the yield stress and the draw stress. Again, this 
varies and, depending on the polymer, temperature and 
strain rate, the ratio of the draw stress to the yield stress 
varies from about 0.55 to 0.915 '20-27 .  

SOLUTION 

Formulation of  thefinal equation 
The final formulation of our problem comes from a 

combination of equations (6) and (10). In order to do this 
we need a relationship between ~ and ft. Since ~ in 
equation (10) refers to engineering strain, we need a 'gauge 
length' to convert w to e. This is conveniently provided by 
~ ,  the maximum value of the'primordial craze' as defined 
by Lauterwasser and Kramer 12. From this we have: 

= w / ¢ ;  (11) 

and, at a specified crack velocity: 

~/4=,1~, (12) 

In this equation, if, is the time rate of change of 
displacement under reference conditions, which we are 
free to choose. Now, from equation (6), ff depends upon 
position within the craze and the velocity with which the 
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F igure  2 The ratio of the craze stress to the stress at the craze tip 
plotted as a function of position in the craze for a rate sensitivity 
value of 0.18 and for three values of the reduced mid-point stress. 
The craze tip is at the left. The two curves near the craze tip are for 
different ways of handling the stress at the craze tip as discussed in 
the Appendix 

I I 
0.8 0.6 1.0 

crack is moving. If we denote the integral in equation (6) 
by l(fl), we obtain: 

~, = Ce v,I ([3,)/2n (13) 

and hence, 

d/d, = if~if, = v/ ([3),/v,I (fl,) (14) 

If we were to compare cracks moving at different 
velocities, i.e. if the crack under consideration were 
progressing at a different velocity than our reference 
crack we would have a very difficult problem, for, as 
previously discussed, the yield stress would be different, 
and there is no reason to expect that the stress distri- 
butions in the craze would be the same under these 
circumstances. Hence, we consider our reference crack to 
be moving at the same velocity as the crack under 
consideration. We are still at liberty to choose a reference 
point within the craze where we wish. For this calculation 
we have chosen it at the mid point of the craze. Finally, 
combining equations (10) and (13) we obtain: 

o(fl) = tr, + ma,log[ I (fl)/ l (0.5) ] (15) 

where: 

1 

0 

(16) 

For purposes of calculation, we divide both sides of this 
equation (15) by the yield stress ay to obtain: 

s(l~) = s, + mS, log I~)/I(o.5) (17) 

where S(fl) = t~(fl)oy and S, = o,/a r It is clear from the way 
we have formulated this problem that at the mid point of 
the craze, S(fl)= S,. It is also clear that S, is related (but 
not necessarily equal) to the ratio of the drawing stress to 
the yield stress. Clearly, we have two parameters at our 
disposal, S, and m, and we carry out calculations for 
various values of these two. At the craze tip, S(0) is always 
equal to unity. 

Solution of  the final equation 
Equation (17) is an integral equation which needs to be 

solved for the stress distribution S(fl). It is different from 
standard types of integral equations in that the unknown 
function is equal to a function of an integral (the log in this 
case). It cannot be solved therefore by standard tech- 
niques. We consequently have had to solve this equation 
numerically by successive approximation. The method of 
solution is given in the Appendix. 

RESULTS AND DISCUSSION 

Stress distributions 
Stress distributions were calculated by the methods 

given in the Appendix for several values of the parameters. 
These were as follows. The values of the rate coefficient 
represented by mS, were chosen to be 0.06 and 0.18. These 
were chosen to represent polymers with moderate to low 
and high drawing rate sensitivity, respectively. The values 
of the reference stress, S,, which represents the ratio of the 
craze mid-point stress to the yield stress were chosen to be 
1, 0.8 and 0.6. The first of these is patently illustrative and 
designed to illustrate qualitatively what happens to a 
Dugdale model where draw rate sensitivity is added. The 
last was chosen because recent approximate calculations 
by Kramer 29 show that the ratio of the craze drawing 
stress to the craze initiation step is about 0.5. Finally, the 
value of 0.8 was chosen as an intermediate value. 

The results of these stress distribution calculations are 
shown in Figures 2 and 3. Figure 2 gives the results for 
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F igure  3 Same as Figure 2 but for a rate sensitivity of 0.06 
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mS,=0.18, and Figure 3 gives them for mSr=O.06. In 
Figure 2, two results are given for each value of St. The 
upper curve in each case is the result when the stress was 
fixed at the yield stress at the origin (~/= 0) and at ~/= 0.01 
as discussed in the Appendix. The lower curve represents 
the case where it was fixed only at the origin. The results 
for this second case for mSr=O.06 (Figure 3) are not 
sufficiently different from the results shown to make their 
presentation worthwhile, hence they are not shown. In 
each Figure, the dotted lines represent those stress regions 
that did not enter into the solution iteration as discussed 
in the Appendix. 

In each case the curves are characterized by a peak in 
the region of the craze tip and one in the region of the 
crack tip. Part of the peak at the origin arises from the 
stipulation of the stress behaviour at the origin, but part of 
it arises from the solution of equation (17). In all cases, the 
stress drops to a value below S,, rises gradually at a rate 
dependent on both mS, and S,, and then rises abruptly at 
the crack tip. We will now discuss the behaviour at the 
craze tip and at the crack tip. 

The behaviour at the craze tip represents 'strain 
softening', and the magnitude of this softening is roughly 
represented by Sr. However, even where Sr is unity, strain 
softening occurs. A qualitative investigation of the form 
that S(r/) must take in order to achieve a solution of 
equation (17) shows that a peak in the stress distribution 
at the origin is necessary. Without such a peak, the 
calculated stress distribution falls to zero much too slowly 
as the origin is approached to permit a solution. Bearing 
in mind that by the reasoning described above the stress at 
the origin cannot be zero and must represent the yield 
stress, the solution to equation (17) appears to demand 
that strain softening occur. This is an unexpected but 
reasonable result. 

The behaviour at the crack tip arises for a different 
reason. Inspection of equation (6) shows that for finite 
stress at the crack tip (fl = 1), ff will always diverge and 
hence, from the empirical stress law, equation (9), so will 
the calculated stress. Moreover, if the assumed stress is 
permitted to drop to zero at the crack tip, ff will always be 
finite, for tr elsewhere is always positive. Hence, the stress 
calculated from ff cannot be zero in our model, and the 
only way to achieve a solution to equation (12) is for the 
stress to diverge at the crack tip. The divergence is very 
slow. Thus, for a stress that rises linearly the divergence of 
equation (6) is logarithmic, and the calculated stress 
diverges as the logarithm of this. The points shown in the 
graphs are calculated for a coordinate value of 0.999999. 

In a recent theoretical treatment of crack growth 
velocity as a function of applied stress intensity factor, 
Kramer and Hart 28, were led to the conclusion that a 
classical r - 1 / 2  stress singularity exists at the crack tip. 
That singularity is much more rapid than the one found in 
this work. More importantly, their singularity is inde- 
pendent of material properties and arises because of a 
need for crack extension force, namely K, in their 
theoretical model of the crack growth process. Our 
singularity, on the other hand, arises because the rate 
dependence of the draw rate. However, since it is difficult 
to conceive of a crazing material with a stress that does 
not increase with the rate of draw, we conclude that in a 
moving crack with a craze at its tip, a stress singularity will 
tend to occur at the crack tip. We say, 'tend to occur' 
because equation (9) is only approximate and because 
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failure will obviously occur before the stress approaches 
infinity. Thus, Kramer and Hart 28, based on the work of 
Trassaert and Schirrer a°, were led to conclude that the 
fibrils right at the crack tip failed by fibril creep. Since we 
have not addressed the mechanisms of crack advance in 
our work we should not pursue this discussion but it 
seems reasonable to conclude that failure occurs very 
close to what we have identified as the crack tip where the 
stress rises. 

The curves we have calculated qualitatively have the 
same features as observed by Kramer ,-nd co- 
workers ~ 1.13. We cannot make too much of a comparison 
because of the great differences in the experimental 
situation. Ours is a highly idealized experimental si- 
tuation of a uniformly advancing crack-craze, whereas the 
Kramer experiments are on static crazes in thin films. 
Nevertheless, in many cases the similarity is striking. 

More pertinent for our purposes are experimental 
observations on crazes at crack tips carried out by 
interference microscopy. These have recently been re- 
viewed by Doll 4. In these experiments the form of the 
displacement curves is determined, and we now proceed 
to discuss this. 

Displacements 
It is clear from our formulation that the curves of stress 

vs. position are essentially curves of the log of &o/OOr 
Hence, the displacement may easily be calculated from 
these curves. The pertinent equation is: 

wq3) = Ce /2n f lq )dfl 
0 

(18) 

where I ~ )  is the integral appearing in equation (6) and ~ is 
the craze length. We have carried out this integration and 
the results are shown in Figures 4-6. In these Figures the 
curves have been normalized by dividing by half the crack 
opening displacement, i.e. w(I). This amounts to plotting 
in units of 

1 

Ce /2,  f I (fl)dfl 
0 

(19) 

o r  

1 

f I(fl)dfl 
K 2 C e  0 

1 

2 1o) F f si,)d, ]2 
LJ J 

0 

(20) 

where K is the stress intensity factor. 
Figure 4 shows the calculated displacement curves for 

the cases where mSr=O.18. This value was selected to 
illustrate the difference between these calculated curves 
and that for the constant stress Dugdale case which is also 
shown in this Figure. The curve for the Dugdale case cuts 
across the calculated curves. Figures 5 and 6 show the 
situation at the origin at a higher resolution. Figure 5 is for 
mSr=O.18 and Figure 6 is for mSr=O.06. In both of these 
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Figure 4 Displacements calculated for the stress distributions 
shown in Figure 2. Displacements for the Dugdale case have been 
added for comparison, The curves have been displaced upwards 
for clarity 
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Figure 6 The-portion near the craze tip of the curves in Figure 4 
illustrating the effect of the peak in the stress at the craze tip 

Figures, the curves for S, = 0.6 and 0.8 show a noticeably 
steeper rise at the origin than does the Dugdale case, as is 
to be expected from the peak in the stress distribution 
calculated for these cases. It should be noted, however, 
that in Figure 6, the curve for s,=0.8 in Figure 6 is a 
reasonable approximation to the Dugdale curve. Indeed, 
the differences do not appear to be much larger than the 
differences sometimes observed between experimentally 
determined displacement profiles and those calculated for 
the Dugdale model 4'5'7. Other choices of parameters 
could make these differences still smaller, but we have not 
pursued this. Suffice it to say that at least a portion of the 

• S r = I  
0.3 • S t=0 .8  

• Sr :O.S 

i 0.2 

0 1  

I I 
0.1 0.2 0.3 0.4 0.5 

r..~llnmW 

Figure 6 Same as Figure 5 but for a rate sensitivity of 0.06. The 
associated stress distribution curves are in Figure 3 

differences between the Dugdale model and the experim- 
entally determined displacement profiles can be explained 
by the existence of peaks in the stress distribution as 
observed by Kramer et al. and as calculated in this paper. 
It is also clear that for materials with smaller rate 
coefficients than used here, the Dugdale model would 
provide an excellent approximation. 

CONCLUSION 

A model has been formulated for calculating the stress 
distribution in a craze at the tip of a uniformly advancing 
crack. The craze is modelled as a collection of independent 
fibrils, and thickens by drawing in a process analogous to 
necking and drawing in a textile fibre. At the tip of the 
craze yielding occurs, and shortly thereafter the craze 
develops. The stress in the craze is determined by the 
drawing stress. Using the fact that the drawing stress 
increases with rate of draw, a non-linear integral equation 
for the craze stress is formulated. Using an empirical 
equation for the dependence of stress on draw rate, this 
equation is solved for the stress distribution. This distri- 
bution shows peaks in the stress at both the craze tip and 
at the crack tip as observed experimentally 11. The former 
arises from strain softening, and this appears to be 
demanded by the model. The latter arises from the 
behaviour of the displacement at the crack tip and is also 
demanded by the model. It is suggested that the presence 
of these peaks account for at least some of the differences 
observed between measurements of displacement profiles 
in bulk specimens and those calculated from the Dugdale 
model 4. 
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APPENDIX 

The numerical solution of equation (17) will be discussed 
in three sections: protocol, integration and treatment at 
craze and crack tips. 

AI .  Protocol 

The protocol that was used is as follows: 
(a) Assume an initial trial solution S[(~/) at the source 

points ~/for the stress distribution. The conditions for this 
choice are described in Section A3. 

(b) Choose values of S, and mS,. 
(c) Compute 1([3)/1(0.5) from the assumed S~(r/), and 

from this a calculated value of the stress S~(fl) at the field 
points fl using equation (17) and the chosen values of Sr 
and mS,. How the integration was performed will be 
discussed in Section A2. 

(d) Generally, the calculated S~(fl) will be different from 
the assumed function S~(~/). Take as a new trial solution: 

S'~ (r/) = [S~(fl) + S~ (r/)]/2; fl = r/ (A1) 

(e) Repeat the process until the calculated distribution 
is equal to the assumed distribution to the desired degree 
of accuracy, taken to be one part in 104 at all points in this 
work. Convergence took 10-15 iterations and was 
smooth for the values of m reported here. 

Uniqueness was checked by starting with different 
values of S~(r/). The final solution was independent of the 
assumed one within the limits of the parameters chosen. 

Stress distribution in a craze tip: E. Passaglia 

A2. Method  o f  integration 

The integral in equation (15) is not easy to integrate 
directly because of the divergence at fl = ~/. It can, however, 
be integrated analytically between any two points for 
constant S(r/) or S(T/) varying linearly. Consequently the 
interval 0-1 was broken up into 54 intervals over which, 
as an approximation, the stress was assumed to vary 
linearly. Integration then amounted to evaluating the 
sum: 

~s4  2 x / ~ ( S t _  Si+ l) +S~(rh+ 1 __~) + Si+ l ([3_th ) 

(A2) 

IN÷ J 

It may be shown that this sum converges in the Cauchy 
principal value sense as fl---,t/. However, the sum cannot 
easily be evaluated for fl = ~/. Since, for comparison of trial 
solutions and calculated solutions, it is necessary for the 
source point (r/) to be equal to the field point (ill fl was 
taken as ( r / -  10-6) to preclude division by zero, except for 
the points ~/=0 (and ~/=0,01) as discussed in Section A3. 
Using values fl closer to i/made no difference in the results 
as reported. 

A3. Treatment at the crack and craze tips 

As can be seen from equation (A2), the final term of the 
sum (t/= 1) diverges logarithmically as fl---~l. The stress, 
however, is given by the Fog of l(fl) (see equation (17)), so 
that the stress has a doubly logarithmic divergence. The 
values reported are for fl = 1-10 -6. The handling of the 
situation at the craze tip is more complicated. As pointed 
out in the body of the text, the craze tip for our purposes is 
where yielding occurs. Actually, fibriUation occurs at 
some point beyond this, and by hypothesis this is the point 
at which craze fibrils are first seen. Now, as easily seen 
from equation (6) or (A2), at the craze tip (fl = 0), ~b = 0. At 
this point, nevertheless, the stress is the yield stress, and 
hence S = 1, and the displacement is yielded material, but 
not craze fibrils. 

In the calculations this situation was handled in two 
different ways. 

(a) In this method, the stress was kept constant at a 
value of unity for ~/= 0 and to r/= 0.01. These points did 
not enter into the iteration protocol described in Section 
A1. They do, however, enter into equation (A2), in 
controlling the displacement at all other points. This 
scheme was chosen to represent in a rough qualitative 
manner the portion of the stress-strain curve at yield. For  
the initial assumed stress distribution S[(~/), the stress was 
decreased linearly from its value of unity at r/=0.01 to the 
value of S, at r/= 0.02, which was the same as at all other 
points to ~/= 1. Iteration was carried out at the points 
0.011,0.015, 0.99, and all multiples of 0.02 up to ~/= 1. The 
values of S at r/= 0 and ~/= 0.01 were always kept at unity. 

(b) In the second method, only the value of S at ~/= 0 
was kept equal to unity. For  the starting distribution, S 
was decreased linearly to S, at 0.02 and then handled as 
above. Iteration was carried out at all points except t /= 0, 
at which point S was always kept at unity. 
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